
Pathways to Concrete Research

Water Industry Perspective

Agenda

Asset Base

Water Industry

- \$160 billion of buried infrastructure
- 200,000 km of water mains
- 155,000 km of sewer mains and channels
 - ~750,000 access chambers*
- 726 wastewater treatment plants
- 501 water treatment plants

Concrete

- Most frequently used in
 - Sewer pipes
 - Treatment plants
 - Access chambers

Notes:

Asset lengths from the Bureau of Meteorology's National Performance Report for Urban Water Utilities *Assumes 1 ever 200m

Market Size: Water

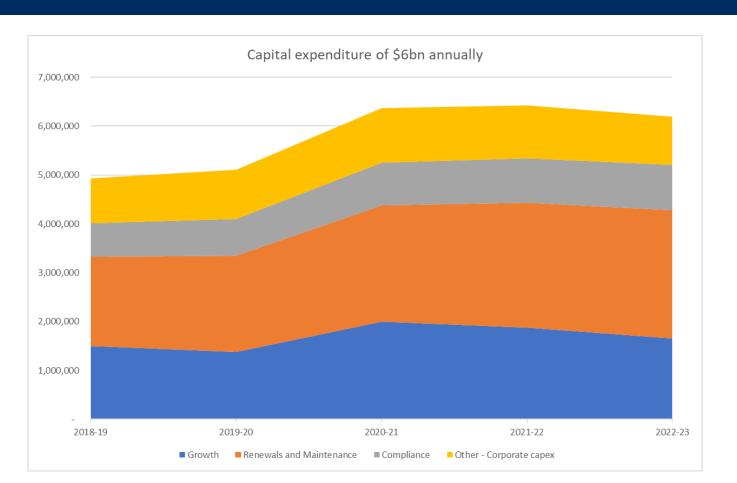
Water Capex

Area	2018-19 (000s)	2019-20 (000s)	2020-21 (000s)
Network Renewals and maintenance	\$768,759	\$806,962	\$976,546
Treatment Renewals and maintenance	\$125,534	\$155,179	\$197,797
Compliance	\$395,146	\$477,109	\$612,070
Growth	\$711,026	\$575,313	\$850,609
Total	\$2,000,465	\$2,014,563	\$2,637,022

Total capex has trended up \sim 15% p.a. (forecast shows this is expected to reduce) Growth is \sim 30-35% of the total capex.

Renewals and maintenance is ~46-48%

Market Size: Wastewater

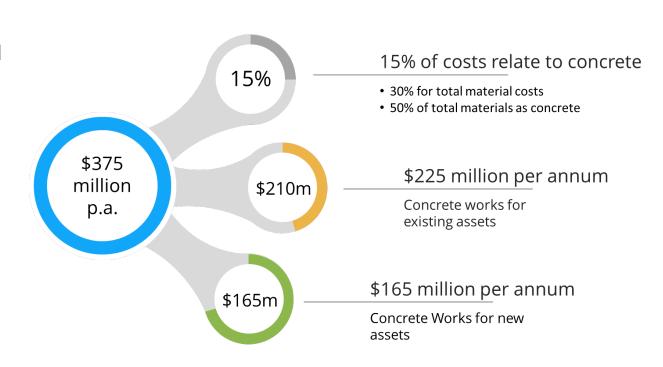

Wastewater Capex

Area	2018-19 (000s)	2019-20 (000s)	2020-21 (000s)
Network Renewals and maintenance	\$496,864	\$522,313	\$685,210
Treatment Renewals and maintenance	\$432,039	\$480,209	\$527,265
Compliance	\$292,929	\$280,054	\$261,272
Growth	\$787,591	\$806,817	\$1,142,358
Total	\$2,009,422	\$2,089,392	\$2,616,105

Total capex has trended up \sim 15% p.a. (forecast shows this is expected to reduce) Growth is \sim 38-43% of the total capex.

Renewals and maintenance is ~46-48%

Market Size: Water + Wastewater (Capex)


Market Size for Concrete

Existing Asset Repairs and Maintenance:

- Sewer Pipes + Access
 Chambers \$685 million
- Treatment Plants \$700 million

New Assets:

 Wastewater growth \$1.1 billion per annum

Key Issues

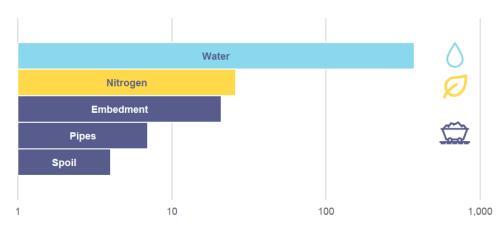
Emissions

- Water agencies looking for ways to reduce emissions.
- 'Green' concrete a definite area of interest.

Concrete Degradation

- Existing concrete structures are most often used in wastewater assets and are subject to corrosion.
- Cost of corrosion to the water industry is estimated at \$982 million per annum*

^{*}Australian Corrosion Association Report:Corrosion Challenges – Urban Water Industry by Greg Moore (2015)


Decarbonisation Pathways

New Assets

- In pipelines excavation and bedding materials far outweigh pipe materials (approx. 1%).
- Pipe materials contribute more to GHG emissions than aggregates (per unit weight).
- Recycling materials is helpful, but has limited impact due to inputs required.

Existing Assets

- Corrosion prevention and repair
- Keeping assets working longer

Flow in GHG emissions (tonnes CO_{2e})⁺

Challenges

- New technologies come to market.
- Performance is often unproven over long time periods the water industry is typically interested in 20+ years and often 50+ years.
- Choices must be made about what to pursue with individual utilities having final say.

AUSTRALIA | NEW ZEALAND

Corrosion Research

SCORe (2008-2015)

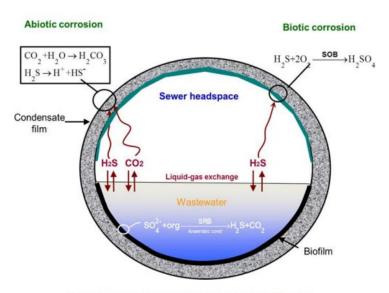
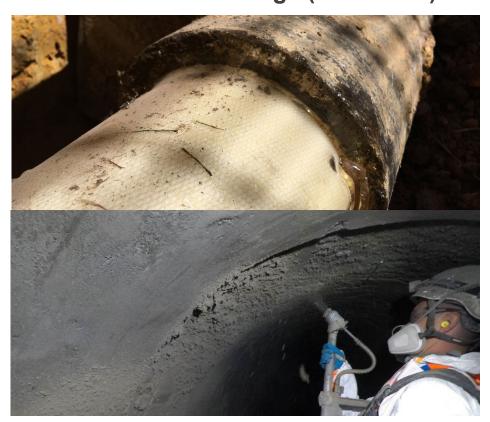



Figure 1. Schematic of sewer processes driving corrosion.

CRC-P Smart Linings (2018-2021)

SCORe Project

Key Areas of Research

- Understanding and predicting corrosion
- Gas-phase technologies
- Liquid-phase technologies
- Decision support and knowledge management
- Studied epoxy and CAC coatings.

Key Findings

- In concrete pipes corrosion takes 2 years to commence.
- Corrosion is low when humidity is <85%.
- Forced ventilation is most useful in gas-phase
- Developed SeweX Model a powerful tool for planning

For more information visit the project website.

Smart Linings Project Overview

Sub-Project 1
Codes
Standards
Decision Tools

Sub-Project 2
Field Trials
Lab Testing
Research

Sub-Project 3
QC
Sensing
Robotics

Sub-Project 4
Education
Training
Information

https://water360.com.au/projects/smart-linings/

Lining Benefits

Reduce Lifecycle Costs

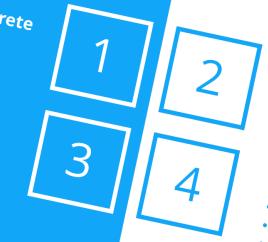
Reduce Leakage

Benefits

Improve Customer Service

AC Pipe Renewals

Reduce Community Impact


Concrete in the water industry

Expected expenditure on concrete

in the order of \$375 per annum

Decarbonisation Pathway Ideas

- Pipe materials
- Embedment materials

Key areas of focus

- Reducing GHG emissions • Prolonging the life of existing

Recent Research

- Why concrete corrodes · How to slow it down
- Keeping assets working longer

QUESTIONS?

Contact details: james.gardner@wsaa.asn.au

Additional Information:

- https://waterportal.com.au/smartlinings/
- https://water360.com.au/projects/sewer-corrosionand-odour-research-score-project/